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Ahstract-Aqueous-phase oxidation of SO2 occurs via a sequence of steps consisting of gas-phase diffusion, 
mass transfer at the gas-water interface, hydrolysis and ionization of the dissolved sulfur-IV, aqueous-phase 
diffusion, and oxidation reaction. Expressions are given for the characteristic times of these several processes 
for reaction in aqueous droplets. Readily applicable criteria are developed in terms of these characteristic 
times to delimit the conditions, in the laboratory or in the ambient atmosphere, under which the rate of 
reaction in an aqueous droplet is equal to the intrinsic oxidation rate or is restricted by the finite rates of the 
several other processes. Under most conditions of concern in the ambient atmosphere, or in laboratory 
simulation of these conditions, the characteristic times of hydrolysis and ionization are sufficiently short 
compared to that of aqueous-phase reaction that the several dissolved sulfur-IV species may be considered to 
be a single pool of equilibrated reactant species. Similarly, the S(IV) solubility equilibria at the gas-water 
interface may also be considered to be achieved on a time scale that is short compared to that of aqueous- 
phase reaction, except perhaps at high pH (pH > 7) where the characteristic time of this process becomes long 
(h 1Osec at 25’C) because of the high solubility of S(IV). 
A more detailed treatment of the problem of simultaneous diffusion and reaction establishes the domain of 

applicability of the steady-state assumption for reaction in aqueous droplets. Within the steady state 
approximation, we examine the magnitude of limitation to the overall rate of reaction resulting from the finite 
rate of mass transport in the gas and aqueous phases and from the finite rate of achieving the solubility 
equilibrium at the interface. Expressions are presented that permit this treatment to be readily applied to 
laboratory kinetic data. 

The foregoing treatment also permits examination of the conditions under which limitation to the overall 
rate of reaction is controlled by one or another of the above mechanisms. For gas- and aqueous-phase mass 
transport by molecular diffusion it is found (again for 25C) that gas-phase mass transport is more 
controlling than aqueous-phase mass transport for pH > 3.3, and that the onset of departure from the 
solubility equilibrium at the phase interface is more controlling than gas-phase diffusion only for very small 
droplets (radius < 0.16pm). For SO2 oxidation by atmospheric Oz, aqueous-phase diffusion of Oz is more 
controlling than gas-phase diffusion of SO2 only for quite high SO1 partial pressure (ps~ > 1Oppm). 

NOMENCLATURE 

A 
G 
R 
H 

F 
M 
Da 
Dg 
R 
T 
a 
r 

Aqueous-phase reagent concentration (M) 
Gas-phase reagent concentration (M) 
Reaction rate (M set ‘) 
Coefficient of physical (Henry’s law) solubility 
(M atm- ‘) 
Flux of material into droplet (mol s- ‘) 
Amount of material in droplet (mol) 
Diffusion coefficient, aqueous phase (cm’s_ ‘) 
Diffusion coefficient, gas phase (cm’s_ ‘) 
Universal gas constant (t‘ atm/mol K) 
Temperature (K) 
Drop radius (cm) 
Radius variable (cm) 
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First-order rate coefficient (s- ‘) 
Time variable (s) 
Gas partial pressure (atm) 
Mean molecular speed (cm s- ‘) 
Dimensionless parameter describing reaction 
and aqueous-phase diffusion, Equation (15). 
Dimensionless parameter describing reaction 
and gas-phase diffusion, Equation (33). 
kt 

rla 
Solubility factor, dimensionless, Equation (2). 
Sticking coefficient, dimensionless, Equation (6). 
Collision rate (mol cm- ’ s- ‘) 
Characteristic time (s) representative of indicated 
process, denoted by the following subscripts: 
c.a. Chemical reaction, referred to aqueous- 

phase concentration 
c.g. Chemical reaction, referred to gas-phase 

concentration 
d.a. Diffusion, aqueous phase 
d.g. Diffusion, gas phase 
phase Establishing phase equilibrium at air- 

water interface 
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Ul Hydrolysis of SO2 and first ionization of 
sulfurous acid 

a2 Second ionization of sulfurous acid 
reag Establishing equilibrium aqueous-phase 

reagent concentration. 
Average over droplet volume 
Steady-state values 
Gas-phase diffusion limited maximum rate, 
Equation (30) 
Values at surface of droplet 
Equilibrium values referred to bulk gas-phase 
concentratitin 
Apparent values based on measured R 

1. INTRODUCTION 

There is now considerable evidence from both labo- 
ratory investigations and field studies showing the 
importance of heterogeneous reactions of SO2 in the 
atmospheric formation of aerosol sulfate (ISSA, 1978). 
Such heterogeneous oxidation may be catalyzed by 
solid surfaces (Liberti et ul., 1978; Changer a/., 1978) or 
may take place in aqueous solutions (clouds or aero- 
sols) (Beilke and Gravenhorst, 1978; Hegg and Hobbs, 
1978) by transition-metal catalyzed reaction (Barrie 
and Georgii, 1976) or by reaction with such oxidants as 
OJ or H202 (Penkett ec u/,, 1979; Larson ef u/., 1978). 
Despite a corpus of research extending for some five 
decades, the present quantitative understanding of 
these heterogeneous reactions remains rather primitive 
[ Freiberg and Schwartz (1980), accompanying paper 
(FS)]. One reason for this is the failure properly to 
take into account the influence upon the rate of 
reaction of the finite rate of mass transport within each 
phase and across phase boundaries. This factor per- 
tains both to the interpretation of relevant laboratory 
studies and to the description of the rates of these 
processes in the ambient atmosphere. 

This paper addresses the role of mass transport in 
the oxidation of SO2 to sulfate in aqueous droplets. 
We first enumerate the several steps that occur as 
components of the overall process and present expres- 
sions by which the time quantities characteristic of 
these steps may be calculated. From comparison of 
these characteristic times it may readily be determined 

whether or not mass-transport limitation significantly 
affects the rate of the overall process. Then, after 
setting out the basic mathematical equations which 
describe mass transport coupled to aqueous-phase 
reaction, we develop a theoretical framework that is 
suitable for determining the magnitude of mass- 
transport limitation to the rate of oxidation of SO2 in 
aqueous droplets in laboratory experiments or in the 
ambient atmosphere. 

The methodology developed in the present paper 
can be utilized for design of laboratory investigations 
of SO2 oxidation in droplets and for the analysis of 
previous such studies from the perspective of the 
influence of mass transport upon observed reaction 
rates. In the accompanying paper (FS) we review the 
existing literature from this perspective. We then apply 
the present methodology to an examination of the 
cause and magnitude of mass-transport limitation in 
two such studies (Barrie and Georgii, 1976; and van 
den Heuvel and Mason, 1963). Mass-transport limi- 
tation to the aqueous-phase oxidation of SO2 in clouds 
or fogs is also addressed. 

The sequence of steps that occurs when SO2 reacts 
with O2 to form sulfate in an aqueous droplet (either in 
the laboratory or in the atmosphere) is depicted in 
Fig. 1 

(a) 

(b) 

(c) 

(d) 

(e) 
(f) 

(g) 

and consists of the following processes: 
Transport of SO2 (and 02) within the gas phase 
to the gas-liquid interface. 
Establishment of local solubility equilibria 
(Henry’s law) at the interface. 
Hydrolysis of SO2 and partial ionization to 
HSOi and SO:-. 
Transport of these S(IV) species, H’, and O2 
within the aqueous phase. 
Oxidation of the S(IV) precursor(s) to S(V1). 
Subsequent adjustment of the ionization 
equilibria. 
Mass transport resulting from the concentration 
gradients introduced by steps (e) and (f). 

A principal objective of laboratory studies has been 
the determination of the intrinsic rate of oxidation 
d[S(VI)]/dr, step (e), since the remaining processes 
are considered to be adequately described theoretically 

I 

I I I 

Fig. 1. Pictorial representation of processes occurring in the aqueous-phase 
oxidation of S02. 
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and/or to be sufficiently fast under atmospheric con- 
ditions as to exert negligible influence on the rate of the 
overall process. However, insofar as laboratory studies 
employ conditions that depart from atmospheric con- 
ditions, the remaining processes may exert a con- 
siderable influence upon the measured rate. This 
applies particularly to studies with bulk solutions for 
which there has been recurrent concern (as discussed 
in FS) as to the adequacy of the mixing processes 
relative to both sulfur-IV and oxygen. The desire to 
minimize the effects of mass transport and to more 
closely simulate reactions in atmospheric aerosols has 
motivated experiments employing liquid droplets with 
both SO2 and OZ as gaseous reagents. However, even 
for these studies it has not been clear whether the 
measured rate of reaction is equal to the intrinsic 
oxidation rate or is restricted by mass transport, and 
indeed there are no accepted and readily applicable 
criteria by which to test for the presence or absence of 
mass-transport limitation. This situation has led to the 
extended discussion that is reviewed by FS. In order to 
develop such criteria we set out the characteristic times 
of the several steps that comprise the overall process, 
under the intuitive supposition (as confirmed in 
Section 3) that mass-transport limitation will be absent 
when the characteristic time of the aqueous-phase 
reaction greatly exceeds each of the several other 
characteristic times. 

2. THE CHARACTERISTIC TIMES 

In this section we present mathematical expressions 
for the characteristic times associated with the several 
processes outlined earlier, considered one at a time. 
Evaluation and comparison of these characteristic 
times permits an initial scoping of a particular set of 
experimental conditions that in turn permits an assess- 
ment of whether the rate of uptake in a situation of 
interest is limited by the rate of chemical reaction, as 
desired, or whether more detailed treatment is re- 
quired, Examination of these characteristic times is 
thus seen to be a useful point of departure in consider- 
ing mass transport limitation to the overall rate of 
reaction. 

In considering the characteristic times it is useful to 
distinguish those steps that are intrinsic to a particular 
chemical system (i.e. establishment of the ionization 
equilibria and the oxidation step) from those which 

describe the transport of material within and between 
the two phases. The latter processes serve to maintain 
the concentrations of the reagent species in the face of 
depletion of these concentrations by occurrence of 
reaction. The rates of these processes depend upon the 
extent of physical contact between the two phases (e.g. 
droplet size), upon the rates of molecular diffusion in 
the two phases, and upon any mechanical mixing that 
may be applied. The rates of the intrinsic processes are 
independent of the physical situation, but would be 
expected to exhibit dependence upon the chemical 
properties of the system (e.g. pH and the concen- 
trations of gaseous and aqueous species) as well as 
upon temperature. 

We first consider the characteristic time associated 
with the oxidation reaction. Since the oxidation of 
sulfur-IV is essentially irreversible, the characteristic 
time of this process is that of the forward reaction. 
Under the assumption, justified below, that inter- 
conversion between the sulfur-IV species is fast com- 
pared to oxidation, then the effective time constant r_, 
associated with chemical reaction ofsqueous sulfur-IV 
species is given by 

where [S(IV)] denotes the total aqueous concen- 
tration of sulfur-IV species, [S(IV)] = [SO*(.J 
+[HSOJ +[SO;-], and - d[S(IV)]/dr denotes 
the rate of oxidation. For S(IV) in equilibrium with 
gaseous SO2 

rxw = cqaq)l = eh%o*7 
where q, the ratio of dissolved S(IV) to dissolved SOZ, 
is given by 

q = I +K,J[H+l +%J&H+12 (2) 

and where H is the solubility (Henry’s law) coefficient 
of S02. Ku1 and Ka2 are the first and second ionization 
constants of sulfurous acid. Numerical values of H, 
Kal, and KaZ are given in Table 1. The solubility of 
SO2 increases strongly with increasing pH as indicated 
in Fig. 2. For a reaction first-order in sulfur-IV, 
d[S(IV)]/dc = -k[S(IV)] and 

? C,a, = k - l. W 

The characteristic time of reaction, the determi- 
nation of which is the objective of laboratory ex- 
perimentation, must be compared to the several other 

Table 1. Solubility coefficient, acid dissociation constants and diffusion coefficients of sulfur-IV* 

Equilibrium constant 
Reaction or process or coefficient Reference 

so &9 = s”2W H = 1.26 Matme Johnstone and 
Leppla (1934) 

so +HzO = H+ +HSOi 
HS8:‘= H+ +SO;- 

KO, = 1.74 x lO-2 M Sill& (I 964) 
Ka2 = 6.24 x lo-* M Sill& (1964) 

Aqueous diffusion D = 1.8 x 10-5cm2sW1 Himmelblau (1964) 
Gaseous diffusion Dl = 0.126cm2 s- ’ Andrew (1955) 

* Values are given for 2YC. 
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Fig. 2. pH dependence of characteristic times of establishing 
hydrolysis and first ionization, second-ionization, and phase 
equilibria of SO2 (left-hand scale) and of sulfur-IV solubility 

(right-hand scale), evaluated for 2YC. 

characteristic times to be developed below. In par- 
ticular, it will be shown below that T~.~. must substan- 
tially exceed the characteristic time associated with 
aqueous diffusion in order that the rate of reaction not 
be diminished by the finite rate of aqueous-phase 
diffusion. 

The relaxation times associated with the SO2 hydro- 
lysis and ionization equilibria have been examined by 
Eigen et ~1. (1961) and have been addressed in the 
present context by Beilke and Lamb (1975), and 
Carmichael and Peters (1979). The first-order rate 
constant for the hydrolysis reaction 

so 2(aq) + H2o - ;tiH+ +HSOJ- (al) 

is kal = 3.4 x 106 s- ’ at 25’C and for the reverse re- 
action k_al = 2.0 x 108 M - ’ s - ‘. The relaxation time 
is evaluated as 

r;ir = kal + k-‘JH+] + k-,,i[HSOs-1. (3) 

It is seen that kal is the dominant term in Equation (3) 
for H’ and HSOJ- concentrations of concern. The 
resulting value for the relaxation time is ral z 3 
x lo-’ s over the entire pH range of concern, as 

indicated in Fig. 2. 
The second ionization equilibrium of sulfurous acid 

k 
“OJ- k: &H+ +SO;- (a2) 

is important at higher values of pH. The relaxation 
time for this equilibrium may be estimated on the 
assumption that the protonation reaction is diffu- 
sion limited (Eigen er al., 1964), i.e. k_uz 2 3 
x lO”M-‘s- ‘. From the acid dissociation constant 

K az, we estimate kaz 2 1.9 x 103 s-l. The resultant 
estimate for r& is given by 

7;~’ = ka2 + K_a2[H+] + ka2[SO;-], (4) 

and is shown in Fig. 2, in the limit of low [SO;-]. 
As we shall see below, these relaxation rates are 

rapid compared to the rate of air oxidation of sulfur-IV 
species. Consequently we must consider the several 

aqueous sulfur-IV species to be in equilibrium and 
treat them as a single pool of diffusing and reacting 
species. 

The time required for phase equilibrium to be 
established locally at a gas-liquid interface in the 
absence of reaction has been considered by 
Danckwerts (1949,197O) in terms of the kinetic theory 
of gases. The time constant characteristic of this 
process is given by 

4HRT ’ 
7 

phase = Lx? ~ 
( ) iJ< y 

(5) 

where Da is the aqueous-phase diffusion coefficient of 
the dissolved species (cm2 s-i), R is the universal gas 
constant (atm M-i K- ‘), T is the absolu1.e tempera- 
ture, I? is the average speed of the gas-phase mole- 
cule (cm s - I), and 5 is a “stickingcoefficient” (dimension- 
less). Experimental work has indicated that the sticking 
coefficient is generally the order of unity, except in the 
presence of surfactants (Danckwerts, 1970). If this is 
the case for SO2 absorbing into water, then the time 
constant rphaX may be evaluated by setting c = 1. For a 
gas such as S02, which undergoes rapid reversible 
hydrolysis and ionization, the Henry’s law coefficient 
H in Equation (5) must be replaced by qH. In the case 
of S02, because of the pH dependence of q there is a 
corresponding strong increase of rphas with increasing 
pH, as shown in Fig. 2. 

Examination of Fig. 2 shows that 7pt_ greatly 

exceeds 701 and 7& over most of the pH range of 
concern. At high pH 7p,_ is quite appreciable (1 s at 
pH = 6.5) because of the high solubility of sulfur-IV at 
such high pH ([S(IV))/psoZ = 9 x 104 Matm-’ at 
pH = 6.5). In fact, however, rp,.,,& calculated by 
Equation (5) may be somewhat unrealistic at high pH 
since a constant pH is assumed, which would require a 
sufficient buffering capacity to maintain this pH in the 
face of the high sulfur-IV solubility. 

With regard to the characteristic times of mixing 
within the two phases, we have noted above that these 
are not intrinsic properties of the system under 
investigation, but depend on the nature of the physical 
contact between the two phases. In the absence of 
mechanically or convectively induced mixing this 
mixing is achieved by molecular diffusion, for which 
process the characteristic time is readily calculable 
from theory. This characteristic time governs the 
approach of the concentration profile (in either gas or 
aqueous phase) to the steady-state (time-independent) 
profile (which may or may not be spatially uniform, as 
will be discussed below). For a spherical drop the 
characteristic diffusion times are given by 

rd.a, = u2/n2Da, aqueous pha.se, (6a) 

7d.s. = u2/7rQs, gas phase, (6b) 

where u is the droplet radius and Da and Ds are the 
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diffusion coefficients appropriate for the two phases 
(Crank, 1975). Since aqueous-phase diffusion co- 

efficients are much smaller than gas-phase diffusion co- 
efficients (typically by four orders of magnitude for 
1 atm pressure) the characteristic diffusion times in the 
aqueous phase are correspondingly greater than in the 

gas phase, as indicated in Fig. 3. Consequently, the gas- 

phase concentration profile will accommodate rapidly 
to changes in the aqueous-phase concentration profile 
and may to good approximation be treated as a steady- 
state system as it “follows” the much more slowly 

varying aqueous-phase system. 
An additional characteristic time, the significance of 

which is not obvious now, but which will be seen later 
to be important, is the characteristic time of chemical - 
reaction relative to the gas-phase reagent concen- 

- tration, defined as 

DRDP RADIUS, cm 

Fig. 3. Characteristic times for establishing steady-state 
concentration profiles by molecular diffusion, in gas and 
aqueous phases, as a function of radius for a spherical droplet. 
Diffusion coefficients were 0.126 and 1.8 x lo- ’ cm2 s- ‘, 

respectively. 

Here d[S(IV)]/dt represents the rate of reaction 

averaged over the droplet volume, and [SOzcaJ] 
represents the bulk gas-phase concentration. As will be 

shown later, T~,~, must substantially exceed the charac- 
teristic time associated with gas-phase diffusion in 
order that the steady-state rate of reaction not be 

diminished by the finite rate by which gas-phase 
diffusion can replenish the reagent concentration. In 

this respect r_. is analogous to the more obvious T_, 
defined above. For a uniform aqueous-phase concen- 
tration [S(IV)] = yHRT [SOzcmJ], 7_, is related to 

7c.a. bY 

One final characteristic time, which we shall introduce 
below, addresses the time required for gas-phase 

diffusion to supply an amount of reagent to the droplet 
necessary to produce a concentration of dissolved 

reagent in equilibrium with the bulk gas-phase reagent 

concentration. As we shall see below, the characteristic 

time for this process, 7rag, is related to the charac- 
teristic time for gas-phase diffusion by 

1 

7 vzip = ;I,HRT~~,~, 

Because of the dependence of q upon pH, 7rag may 
become quite large at high pH even for small droplets. 

We now consider the insights that may be gained 

from comparison of the characteristic times of reaction 
and mass transport. Much of the discussion that 
follows will address the interworking between chemi- 

cal reaction and aqueous-phase diffusion. It is clear 
that if, as in the case in small droplets and/or slow rates 

of reaction, the characteristic time of aqueous-phase 
diffusion is much shorter than that of chemical re- 
aCtiOn (i.e. 7&, 4 7c,a) the rate Of the Overall process 
(i.e. the rate of sulfate production) will be controlled 

entirely by the rate of reaction. At the other extreme, if 

r&, $ 7c,a, (as is the case in large droplets and/or fast 
reactions), the rate of diffusion will significantly affect 
the rate of the overall process (though, as will be shown 
below, the overall rate never becomes entirely in- 

dependent of the reaction rate). Additionally, of 
course, there is a “gray area” in which rd.a. and 7c,a, are 
comparable in magnitude. In the first case (rd,a, d 7c,a) 

the steady-state reactant concentration profile is 

uniform throughout the droplet, since diffusion is fast 

enough to replenish sulfur-IV as fast as reaction 
occurs. In the other two cases (r&. % 7c,a, and 
r&, $ 7c,a) the steady-state reactant concentration pro- 
file will be non-uniform, decreasing as a function of 

distance from the droplet surface to the center, because 

of the inability of diffusion to keep up with the rate of 
reaction. 

Regarding gas-phase diffusion, we shall show below 

that although rd,a, is alWayS much greater than rd,s,, it iS 
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nonetheless possible for the rate of sulfate formation 
to be restricted by the finite rate of gas-phase diffusion. 
This is because the concentration profile of SO2 in the 
gas phase depends on the ability of gas-phase diffusion 
to replenish SO2 that is removed by entering and 
reacting within the drop. As we have already said, we 
anticipate that there will be no gas-phase diffusion 
limitation for 7d.g. Q 7c.g., but that such limitation will 
be appreciable for 7d&-z 7c.g.. 

One further concern regards the assumption of phase 
equilibrium at the gas-water interface. Generally 
it has been assumed that Henry’s law (as extended by 
the factor q to account for rapid aqueous-phase 
equilibria) holds locally at the interface, at least for 
times greatly in excess of 7rhase. However, for a 
dissolved gas undergoing irreversible reaction, if this 
reaction is sufficiently fast, phase equilibrium may not 
be achieved, even in steady state. As is discussed below, 
the criterion for achieving this phase equilibrium in 
steady state is that 7rhaX 4 7_. 

The above qualitative discussion indicates (as con- 
firmed below) that the rate of reaction in an aqueous 
droplet, as measured in the laboratory, is equal to the 
intrinsic rate, provided that mass transport limitation 
is absent, as indicated by comparison of the charac- 
teristic times. That discussion does not, however, give 
quantitative indication of the extent of mass-transport 
limitation when it is present, nor does it provide a 
means for analyzing experimental data to determine 
the extent of such limitation. For this quantitative 
discussion we turn to the mathematical treatment in 
the next section. 

3. MODELS OF MASS TRANSPORT AND REACTION 

We now proceed to consider quantitatively the rate 
of reaction in droplets under conditions where this rate 
may be significantly restricted by mass transport. We 
focus our attention first on mass transport and re- 
action within the droplet, assuming that the rate of 
uptake is not restricted by gas-phase diffusion. 
Afterwards we consider situations in which the rate of 
uptake may be restricted by gas-phase diffusion or by 
the finite rate of achieving phase equilibrium. 

Aqueous-phase difusion and reaction 

In the model that is developed we examine the 
temporal and spatial evolution of the aqueous phase 
concentration of a reagent species, e.g., S(IV), after a 
spherical drop is suddenly exposed to a gaseous 
concentration of the reagent species that remains 
constant throughout the exposure. We also examine 
the temporal and spatial evolution of the total material 
(reactant plus product) in the droplet in this situation. 
The time and space dependence of the concentration of 
a species undergoing diffusion and irreversible re- 
action is described by 

dA 
~ = DaV2A-R(r,r). 
dt 

Here A represents the concentration of the reactant, a 
function of time and position within the drop; Da is the 
aqueous-phase diffusion coefficient of the reactant and 
R(r, l) represents the rate of reaction, a function of 
space r and time z. For a spherically symmetrical drop 
Equation (8) becomes 

- M.3 0, (9) 

where r is the radius variable. The constant gas-phase 
concentration is assumed to induce at the surface of the 
drop a constant solution-phase concentration A* 
which corresponds to the equilibrium solubility of the 
gas in the liquid. These circumstances establish the 
following initial and boundary conditions 

A(r, 0) = 0, r -C a, (1~) 

A(a, t) = A*, t 2 0, (1OW 

where a is the radius of the drop and where the 
exposure of the drop to gas phase reagent starts at time 
1 = 0. 

The expression for the reaction rate depends on the 
kinetic mechanism. Johnstone and Coughanowr 
(1958) have treated the case of a zero-order reaction, 
whose rate is 

k 
R(r, t) = 

09 A>O, 

0, A = 0, 

and have interpreted their experimental data in terms 
of this model. We examine the case of an irreversible 
first-order reaction, whose rate 

R(r, t) = kA. W) 

This partial differential equation also has been treated 
in detail (Danckwerts, 1951; Cadle and Robbins, 1960; 
Crank, 1975). Consequently, we restrict the present 
discussion largely to a statement of the results and 
application to the interpretation of experimental 
studies. 

Solution of Equation (9) is conveniently achieved by 
considering first the solution to the steady-state 

dA 
equation, obtained by setting K = 0. Physically this 

solution is achieved at long times after the initial 
transient, resulting from the influx of reactant into the 
droplet, has decayed. This decay is quite rapid. As is 
shown in the Appendix, the rate of uptake into the 
drop exceeds the steady-state rate by no more than 7 % 
att=k-‘andl.l%att=2k-‘.Inthesteadystate 
condition the amount of dissolved reagent is constant, 
and thus the rate of uptake is equal to the rate of 
reaction. The steady state solution ASS(r) is given by the 
solution of the ordinary differential equation 

with boundary condition 

4(4 = 4. (13) 
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0.8- 

0 0.2 0.4 0.6 0.8 I.0 

r/a 

Fig. 4. Steady-state radial concentration profiles of con- 
centration of a reactant species A(r), relative to the con- 
centration and the surface of the drop A*, for a drop of radius 
u, for indicated values of the dimensionless parameter 

(In contrast to the reactant, the radial concentration 
profile of the product does not become constant at 
long times.) Much physical insight into this problem 
may be gained from consideration of the steady state 
limit. 

The solution to Equation (12) with condition (13) is 

u sinh (q r/u) 
4sw = A*; 

sinh q ’ 

where we introduce the dimensionless parameter 

q E a(k/Dap2. (15) 

As we shall see, knowledge of the value of q charac- 
terizing a given physical system is fundamental to the 
understanding and description of the system. In order 
to enable appreciation of the role of the diffuso- 

reactive parameter q upon the steady-state concen- 
tration profiles within the drop, we show these profiles 
in Fig. 4 for several values of q. It is seen that at low 
values of q, the steady state reaction profile is nearly 
uniform. This reflects the rapidity of diffusion relative 
to reaction. However, for values of q of the order of 
unity and greater there is an appreciable depletion of 
& towards the center of the drop, reflecting the 
inability of diffusion to restore the decrease in ASS 
caused by chemical reaction. In other words, with 
increasing q there is decreasing penetration by & from 
the surface of the drop into the interior. This effect is 
displayed also in Fig. 5, in which the 
the center of the drop 

Ass(O) = A -L 
*sinh q’ 

(16) 

concentration at 

is given as a function of q. 

More important than the dependence on q of the 
concentration at the center of the drop is the depen- 
dence on q of the average concentration &, since the 
rate of reaction averaged over the drop,R = kx, will at 
steady state be proportional to this average. XSS is 
evaluated as 

L 
XSS = (47ru3/3)_ l 

1 
47rr2 ,4&)dr. (17) 

0 

Integration of ASS(r) given in Equation (14) yields the 
result 

x&l* = 3(9+$). 

This steady-state average concentration is also shown 
in Fig. 5 as a function of the parameter q. For q 2 1 the 
steady state average concentration ZSS is seen to be 
significantly less than the equilibrium concentration 
A*. The fall-off of& with increasing q is slower than 
that of the concentration at the center, ,4SS(0). This 

, HIGH-q ASYMPTOTE I 

1 I ll~llll I I I l’llll 

2 5 IO 20 50 IO0 

q=a (k/Do) 
I/2 

Fig. 5. Average concentration of reactant species x and concentration at 
the center of the drop A(O), relative to the concentration at the surface of 

the drop A*, at steady state, as a function of q. 

AE 15~7 - C 
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slower fall-off reflects the large fraction of the volume 
of the drop that is “near” the surface. Several limiting 
approximations for& at low and high orders of 4, will 
be useful in discussion which follows. For low values of 
q the ratio &/A* is close to unity 

X&l* = 1, q < 1, (18a) 

taking the value 0.94 at 4 = 1. For moderately high 
values of q, & is very closely approximated by 

At high values of q 

lim &/A* = 3 q- ‘. 
q-+m 

It is instructive to compare the condi tion (18a) to the 
intuitive criterion developed above that r&, < r_ in 
order that the rate of uptake not be appreciably 
influenced by aqueous phase diffusion. From the 
definitions (1), (7) and (17) it may be seen that the 
condition q < 1 is equivalent to Td,a, < 0.1 r_, in 
agreement with the intuitive supposition. 

Figure 5 may be used to address the dependence of 
the rate of reaction on drop radius, since Rss, the 
steady-state average rate of reaction per unit volume, is 
equal to k&. For constant k and Da, it is seen that & 
is independent of u at low q but ultimately at large q 

decreases as a - ‘. The expression (18) for xss also 
permits consideration of Rss as the rate coefficient k is 
increased holding the drop radius and diffusion co- 
efficient constant. (Such a dependence might be ob- 
served experimentally by varying the concentration of 
a dissolved catalyst.) In Fig. 6 is plotted a normalized 
rate of reaction Rss/(DaAJu2) as a function of the 
normalized rate constant k/(ZJ.Ju2) (which is equi- 
valent to q2). Also shown in Fig. 6 are the asymptotes 
to this function for the low-q [Equation (18a)] and 

high-4 [Equation (18c)] limits. It is seen that at low 
values of k (and hence low values of LI) the average rate 
of reaction in the drop increases linearly as k is 
increased, since the reagent concentration within the 
drop remains uniform at the surface value A*. As k 
continues to increase this linear relation ceases to hold, 
since diffusion can no longer maintain a uniform 
concentration profile, and the average concentration 
begins to decrease. However, it may be seen that the 
decrease in & with increasing k is always more than 
compensated for by the increase in k, so that the 
average reaction rate continues to increase with in- 
creasing k. Ultimately, as the high q asymptote is 
approached, the average rate of reaction exhibits a 
square-root dependence on k. This square-root depen- 
dence is characteristic of a first-order reaction in the 
thin-film limit as treated by penetration theory [cf. 
Danckwerts (1970)]. Figure 6 is particularly relevant 
to the discussion reviewed in FS addressing whether an 
observed dependence of the rate of reaction upon k 

establishes the absence of aqueous-phase diffusion 
limitation, showing that even though the rate of 
reaction is severely restricted by diffusion it continues 
to increase with increasing k. Consequently, the ob- 
servation of an increase in reaction rate with increasing 
k cannot be taken as proof that a system under study is 
exhibiting the intrinsic, chemically limited rate. 

The expressions given here lead to a criterion that 
may be used to test for diffusion limitation in experi- 
mental studies. From a measured average rate of 
uptake per unit volume of drop i?, one computes an 
apparent rate coefficient 

k’ G R/A*, (19) 

and in turn the apparent diffuso-reactive parameter 

q’ = u(k’/D.J1’2. (W 

If $ < 1.2 then the average concentration Ass closely 

Fig. 6. Relative rate of reaction, at steady state, as a function of increasing 
first-order rate coefficient k for a fixed droplet radius u and diffusion 
coefficient Da. Low-q asymptote (unity-slope on log-log plot) gives rate 
in absence of diffusion-limitation. High-q asymptote (slope = 1/2) shows 
continued increase in rate with increasing k, despite diffusion limitation. 
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APPARENT PARAMETER CI’ 

Fig. 7. Correction factors to determine true values of k and q 
from experimentally determined “apparent” values of q’ and 
k’ as a function of the apparent value q’ = u(k’/D.$“. For q’ 

beyond the range given see Equations (21a) and (22a). 

approximates (within 10 %) the surface concentration 

14~ and the estimate of k by Equation (19) is valid. If, 
however, q’ is substantially greater than 1.2, then A* 
significantly exceeds &, and there is significant diffu- 
sion limitation to the rate of uptake; i.e. k’ evaluated by 
(19) underestimates the true value of k. 

If it is found by evaluation of q’ that diffusion 
limitation is significant, it is possible using the results 
given here to compute the true values of k and q from 
the apparent values k’ and q’. To facilitate this we give 
in Fig. 7 the correction factors 

k/k’ = A.J&, (21) 

and 

q/q’ = (A*PLP2, (22) 

as a function of q’. For values of q’ exceeding 3 these 
correction factors become [Equation (18b)] 

q’ 2 3, 

and 

-A+L q’z3. q 
q’ 3 q” 

As anticipated, the correction factors are quite close to 
unity for low values of q’ but become quite appreciable 
for values of q’ greater than 1. Thus, for example, the 
apparent rate coefficient k’ computed from experi- 
mental data by Equation (19) will be lower by a factor 
of two than the actual value, for q’ evaluated by 
Equation (20) equal to 3.4. It should be emphasized 
that these correction factors are exact only for re- 
actions that are first-order in the concentration of the 
dissolved gaseous reagent. For reactions described by 
other rate laws ihe correction factor k/k’ should be 
considered only an approximate index of the magni- 
tude of the correction factor required. 

Gas-phase diflusion and aqueous-phase reaction 

We now address the question of diffusion limitation 
in the gas-phase. As in the case of the aqueous phase we 
consider mass transport in the gas phase to be 

governed by molecular diffusion, appropriate in the 
absence of mechanically or convectively induced 
mixing. (If such mixing were applied, additional 
studies might be required to ascertain .the charac- 
teristic time of that mixing.) The differential equation 
describing the gas-phase diffusion is 

dG 
- = DsV2G, 
dt 

r > a, (23) 

where G(r, t) is the concentration of gas-phase reagent, 
with boundary condition 

G(co, t) = Gm. (24) 

We do not treat the time-dependent gas-phase 
problem since, as we have noted, Dg $ Da, and con- 
sequently the profile of SO2 concentration in the gas 
phase will rapidly adjust to accommodate changes in 
the aqueous-phase concentration profile. The question 
that we address therefore relates to the extent of 
departure of the steady-state or pseudo-state gas- 
phase concentration from a uniform profile equal to 
the bulk gas-phase concentration. We thus consider a 
pseudo-steady-state solution to Equation (23) G=(r) 
satisfying the condition of a prescribed amount of 
reagent entering the (spherical) droplet per unit time 

= $a3R; (26) 
r=a 

here a is the rate of material entering the droplet per 
unit volume of the droplet. The solution to Equation 
(25) with conditions (24) and (26) is 

GSS(r) = Gm - (Ra3/3Dg)rm1, (27) 

i.e. decreasing uniformly from the bulk value to the 
value at the surface of the drop 

G=(a) = Gm -Ra2/3Dg. (28) 

We are particularly interested in the fractional depar- 
ture of G=(a) from the bulk value as a criterion for the 
lack of gas-phase diffusion limitation to the rate of 
uptake into the drop 

1 G&l - 2 
-- = Ra 

Gm 
/3DgGm 6 1. (29) 

The criterion (29), which derives from a quantitative 
consideration of the decrease in the surface concen- 
tration of the reagent gas from its bulk concentration, 
may be seen to be equivalent to the intuitive criterion 
developed in Section 2 that r,.i,,, 6 7c.g,. It is this 
equivalence that led to the definition of 7cg. that was 
presented. 

It is interesting to observe that there is a maximum 
rate R_ at which gas-phase reagent can be diffused 
into a droplet. This rate, which is attained 
surface concentration G(a) = 0, is given by 

when the 

R mx = 3 DgG Ja2, (30) 
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and serves as an index against which to compare a 
measured rate of uptake i? to test for gas-phase 
diffusion limitation. If x/R_ is appreciable, then the 
gas-phase concentration at the surface of the droplet 
G&J) is appreciably less than that in the bulk Ga. 
Under the assumption of phase equilibrium at the 
surface of the droplet the same conclusion holds for 
the aqueous phase concentrations, namely that A* is 
appreciably less than & , the surface concentration in 
phase equilibrium with the bulk gas-phase concen- 
tration. The correction factor here is 

AJAm = G&)/Cm = 1 -x/RmX 

= 1 -RcI~/~D~G~. (31) 

This correction factor applies irrespective of the 
mechanism and order of the aqueous-phase reaction. 
We note also that in contrast to the case of aqueous- 
phase diffusion limiting, the rate of reaction can 
become entirely gas-phase diffusion controlled. In the 
limit asRapproaches R_,, the rate of uptake becomes 
independent of k and depends on the first power of Ga, 
irrespective of reaction order. In this limit also R 
exhibits a characteristic inverse square dependence on 
drop radius a. 

Expression (31) may be simplified in the case of 
a first-order reaction in steady state, for which 
Rs = kZss, to yield 

4#* = 1 +(Xs/~*)~~ (32) 

where the factor (X=/A*) due to aqueous-phase 
diffusion limitation is given by Equation (18) and we 
introduce the dimensionless parameter 

g = kA,JR_. (33) 

The parameter g is an index of gas-phase diffusion 
limitation: g + 1 denotes the absence of gas-phase 
limitation whereas g 2 1 denotes potentially sig- 
nificant gas-phase diffusion limitation4efinitely sig- 
nificant in the absence of aqueous phase diffusion 
limitation. From Equation (30) and noting also that 

& = PQ!Z~G~, we see that g is independent of gas- or 
aqueous-phase reagent concentration, 

g = kqHRTa2/3Dg. 

Equation (32) may be combined with Equation (18) 
to obtain an expression for the overall (gas plus 
aqueous phase) magnitude of reduction of the rate of 
reaction due to diffusion limitation 

where the two terms represent the contributions 
of aqueous and gas-phase diffusion limitation, 
respectively. 

Equation (32) also permits us to formulate an overall 
criterion for the absence of diffusion limitation in 
either phase. In the absence of aqueous phase diffusion 
limitation (q 5 1), x=/A* = 1, and we obtain 

L \. \ -I 

CF 
\ 

W 602 ‘\ 
Ll MITING i_ A 0.02 

I ---_._.-._.J 

10-51 I , I I I 
2 3 4 5 6 

$ot 

Fig. 8. Upper bound to qs, qloTo, such that diffusion limi- 
tation to the rate of reaction not exceed 10 %. ---- represents 
individual gas-phase and aqueous-phase bounds; - repre- 
sents bound from the combined effect. -.-.-. gives the SO2 
partial pressure pc$& that demarcates regions in which SO2 or 
OZ diffusion limitation is more restrictive. Curves applicable 

to 25OC. 

Am/A* = 1 + ka2qHRT/3Dg = 1 +q2qHRTD.J3Dg. 

Hence for A* to exhibit departure from Am by no more 
than 10% we obtain the upper bound upon q 

q < (0.3 Dg/r/HR7-D.J”2. (35) 

This bound on q exhibits a pH dependence for SO2 
because of the pH dependence of q. In Fig. 8 is shown 
as a function of pH the upper bound on q in order that 
the decrease in the rate of reaction not exceed 10% 
because of the limitation of either gas-phase or 
aqueous-phase diffusion. At low pH the aqueous- 
phase diffusion limitation is more restrictive, but above 
pH z 3.3 the gas-phase diffusion limitation is more 
restrictive because of the strong increase in solubility 
with increasing pH. 

In connection with this transition between aqueous- 
and gas-phase limitation to the rate of uptake of SO2 
by water, it is interesting to observe that a transition at 
a similar pH is expected where the mechanism of mass 
transport is that of turbulent mixing. Liss (1971) [cf. 
also Brimblecombe and Spedding (1972)] has used 
empirical mass transport coefficients to conclude that 
under atmospheric conditions governing the uptake of 
SO2 by natural waters the uptake rate would be 
controlled entirely by gas-phase mass transport for pH 
greater than 2.8. 

The recognition that there is a maximum rate Rmx 
at which material can be diffused to the surface of a 
drop motivates us to define one additional charac- 
teristic time 

z Rag = A CoPLax- (36) 

This quantity is a measure of the time required to 
supply, by means of gas-phase diffusion, sufficient 
reagent to establish the equilibrium reagent concen- 
tration in aqueous droplets; i.e. the condition 

t + *reag must be fulfilled before such an equilibrium 
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condition can be achieved. We note that T_~ may be 

related to T~,~, 

and note also that because of the pH dependence of q, 
t ~~~ may become quite appreciable at high pH. Thus 
for pH 6.5 [qHw= 105 M(aq)/M (g)], and a droplet 
radius of 1 mm, eras * 1 h. This point has been 
discussed also by Beilke and Gravenhorst (1978), who 
have presented curves showing the approach of the 
aqueous-phase S(IV) concentration to its equilibrium 
value as a function of time for various values of pH. (It 
should perhaps be pointed out that the leveling off of 
the uptake curves presented in Fig. 3 of Beilke and 
Gravenhorst is due simply to saturation of the drop by 
sulfur-IV and not to an increase in surface resistance as 
those authors stated.) 

If the average steady-state aqueous-phase concen- 
tration departs significantly from Am, then the time 
characteristic of reaching this steady-state reagent 
concentration will be less than t rag, being given rather 

by 

&ag = &/R ,,-,ax, 

where xss is given by Equation (34). 

(38) 

One final point that should be emphasized is that the 
discussion of gas-phase mass transport, as also for 
aqueous phase, has assumed that the only mixing 
process occurring is that of molecular diffusion. The 
distance scale (“half-distance”) characterizing the fall- 
off in gas-phase concentration is equal to the droplet 
radius a. For larger droplets (a B 1 mm) mixing on this 
distance scale is highly susceptible to convection or to 
mechanically induced gas motion. Consequently the 
correction factor [Equation (31)] should be initially 
considered an index of the magnitude of the potential 
error arising from gas-phase diffusion limitation and 
should be applied only when one is confident that 
diffusion is the dominant gas-phase mixing process. 
Similarly, while the magnitude of eras given by 
Equation (37) may substantially overestimate the time 
required to supply the reagent to the droplet, this 
quantity should nonetheless serve as a guide for 
concern in the design and interpretation of 
experiments. 

Phase equilibrium and aqueous-phase reaction 

We examine here the conditions under which the 
rate of uptake by an aqueous medium may be re- 
stricted by the finite rate at which phase equilibrium is 
achieved at the gas-liquid interface. This equilibrium is 
brought about by the rate of collisions of gas-phase 
molecules with the surface (Danckwerts, 1970), which 
is given by 

cJ+ = $(0<, (39) 

where r~ is the rate per unit surface area, moles 
cm-’ s- ‘, and the other symbols have been defined 

above. Expressing G(a) in terms 
aqueous phase concentration A* 
G(u),A* z qHRTG(a), we obtain 

of the hypothetical 

in equilibrium with 

o+ = EA&/4r/HRT. 

The rate of material leaving the aqueous phase back 
into the gas phase is based upon the actual aqueous 
phase surface concentration A(a) and is 

c_ = rA(a)t/4r/HRT, 

whence the net rate is 

’ f3 = fl+ -g- = 4rjHRT 
[A* - A(@]. (40) 

This net rate replaces Equation (13) as the boundary 
condition for the differential equation describing the 
steady-state concentration profile, Equation (12); i.e. 

[A* - A(U)]. (41) 

The solution to Equation (12) with boundary con- 
dition (41) is the same as Equation (14) except that A.,, 
is replaced by A(a); the ratio of A*, the equilibrium 
surface concentration, to A(a), the actual surface 
concentration, is 

A.JA(a) = 1 + 

(42) 

where we have made use of the definitions (la), (5) and 
(15). The factor in brackets is equal to xss/A*, 
Equation (18). For low values of q, i.e. corresponding 
to the absence of aqueous-phase diffusion limitation 

AJA(a)=l+ ?@!!E 
( J 

iI2 
(4M T c.a. 

;,q<l, 

whereas for high values of q 

AJA(a) = 1 + bphase /L$‘~, q 2 10. WW 

Equation (42) expresses the decrease in surface con- 
centration A(a) resulting from depletion of the 
aqueous phase reagent by reaction faster than the 
phase equilibrium can be restored. For T~,~, $ rP,,ase, 
this depletion is negligible, as anticipated, and thus the 
surface concentration A(a) is equal to the concen- 
tration in equilibrium with the gas phase concentration 
at the surface Gss(a). However, for rr,hase of the order of 
or exceeding T~,~, there may be an appreciable decrease 
in A(a) relative to A*. 

Equation (42a) permits evaluation of a bound on q 
in order that A(u) not depart from A* by more than 
lO#$$ viz. 

q < (0.3 aiFJ4q H RTDJ’ ‘2. (43) 

Comparison of Equation (43) with Equation (35) (the 
bound on q that gas-phase diffusion limitation not 
exceed 10%) shows that the phase equilibrium con- 
straint is less restrictive than the gas-phase constraint 
for a B 4 D.&, but is more restrictive for droplets of 
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smaller radius. Assuming that the sticking coefficient For diffusion limitation to be negligible ( c 10%) 

5 = 1, then the constraint [Equation (43)] is more q. < 1.3. Hence Equation (44) may be considered to 
restrictive than Equation (35) only for a < 0.16pm. place a further bound on 4s, viz. 

Mass transport oj’ O2 

For the aqueous-phase oxidation of sulfur-iv by 

dissolved oxygen we must address also mass transport 
limitation for reagent OZ. Assuming the reaction to be 

first order in [O+J we may proceed entirely analog- 
ously to our treatment for SOZ. This treatment yields 
the bound q. < 1 from aqueous-phase diffusion as 

well as the bounds [Equations (35) and (43)] from gas- 
phase and surface considerations. Evaluation of the 
latter two bounds for OZ establishes them to be far less 
restrictive than the aqueous-phase diffusion con- 

straint, so we may restrict our consideration to 

aqueous-phase mass transport only. 

where 

4s 6 &.O? (45) 

qs,o = 1.3(2D o~~~,~o~Po~/~s~~~~~so~Pso~)1’2~ (46) 

If 4s,o is lower than the bound 410,z from aqueous or 
gas phase diffusion, then the constraint [Equation 
(45)] will be a more restrictive limitation on 4s. From 

Equation (46) it is seen that this condition will obtain 
for values of SO2 partial pressure exceeding a critical 

value defined as 

By analogy to SOZ, the parameter q. is equal to 

~(~o/~o~,~~)1’2, where 

k0 = - (d[o~,~~,l/dt)/[o*,~~,l. 
By stoichiometry 

d[O1taJldt = +d[S(IV)]idt, 

and hence q. is related to 4 for S(IV), which we now 

denote as 4s by 

This critical value of pSo2 was evaluated as a function 

of pH for po2 = 0.2 atm and 25C and is given in Fig. 8. 
[Here we have made use of values of Ho = 1.27 
x 10e3 M atme (Loomis, 1928) and of DoZiaj = 2.3 
x 10-‘cm2s-’ (Himmelblau, 1964).] It is seen that 

mass-transport limitation to the rate of reaction by O2 

in the absence of SO2 limitation is significant only at 
rather high SO2 partial pressures. Of course, mass 
transport limitation by both SO2 and O2 might occur 
and should be examined if necessary. 

Table 2. Summary of uniformity conditions, characteristic times and criteria 

Uniformity conditions 

Aqueous phase: A(r, f) = ,4(u) 
Surface: A(a) = /4* [= qHWG(u)] 
Gas phase: G(r, t)= G_ 
Overall: A(r, f)= ~HRTGm 

Characteristic times 

Phase equilibrium *phax Dat4VHw/R)2 

Hydrolysis and 1st ionization T Ill Pal +LdH+l +WO;lK’ 

2nd ionization 

Aqueous chemical 

Aqueous diffusion 

Gaseous chemical 

Gaseous diffusion 

Reagent supply 

Intrinsic rate criteria 

1 a2 

%.a. 

?d.a. 

1 C.& 

7d.g. 

%eag 

r al3 To2’ Tphase Q 7c.a. -intrinsic rate is rate of S(IV) oxidation 

pseudo steady state in aqueous phase for fixed G(a) 
pseudo steady state in gas phase for fixed surface 
sink rate 
overall steady state provided SSl and SS2 are 
fulfilled 

Steady-state spatial uniformity criteria 

rd.a, 6 T~.~, -aqueous phase 
*d.g. + kg. - w phase 

+ Valid under condition of aqueous-phase uniformity. 
z For first-order reaction. 
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4. SUMMARY AND CONCLUSIONS 

The aqueous-phase oxidation of SOZ, as any 
gas-liquid reaction, inevitably involves competition 
between mass transport and reaction. To facilitate 
understanding of this competition we have identified 
characteristic times associated with the several steps in 
the overall process and have presented expressions 
whereby these characteristic times may be evaluated 
for reactions in spherical drops. Examination of these 
characteristic times permits the time for the reaction 
system to reach steady state in a particular situation to 
be readily ascertained. Similarly, by comparison of 
these characteristic times it may be ascertained 
whether a measured rate of reaction is equal to the 
intrinsic reaction rate or is limited by mass transport in 
the gas-phase, at the air-water interface, or in the 
aqueous phase. Table 2 presents this comparison and 
indicates the criteria that must be fulfilled for spatial 
and temporal uniformity to be achieved under experi- 
mental conditions or in the ambient atmosphere. The 
three steady-state criteria must be satisfied in order for 
steady-state to be attained. After the steady state is 
reached, the concentration profiles may or may not be 
uniform, and phase equilibrium may or may not be 
established at the surface, depending upon the relative 
magnitudes of the several characteristic times. The 
resulting concentration profiles in the two phases and 
at the interface are illustrated schematically in Fig. 9. 

A theoretical model was presented whereby the 
extent of decrease in reaction rate may be calculated 
for each of the three mass-transport limiting processes, 
for a reaction that is first-order in the concentration of 
the dissolved reagent species, and for mass transport in 
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Fig. 9. Schematic representation of steady-state concen- 
tration profiles in gas (G) and aqueous (II) phases; gas-phase 
concentrations are scaled relative to aqueous phase con- 
centrations by the factor r//fRT. Gm represents bulk gas-phase 
concentration; Am represents aqueous phase concentration in 
equilibrium with Gm. Gss(r) reflects decrease in G due to gas- 
phase diffusion limitation. A.+ is aqueous phase concentration 
in equilibrium with Gss(u). The difference between A* and 
A(u) represents departure from phase equilibrium. A_(r) 
reflects decrease in A due to aqueous phase diffusion 
limitation. AJO) and Ass represent steady-state concen- 
trations at the center of the drop and averaged over the drop, 

respectively. 

each of the two phases occurring by molecular diffu- 
sion. This treatment led to correction factors that may 
be used for such reaction systems to infer the intrinsic 
rate constant from laboratory measurements con- 
ducted under mass-transport limiting conditions. In 
principle this treatment might be extended either 
analytically or numerically to other reaction or mass- 
transport mechanisms. However, in practice it may be 
difficult to establish these mechanisms for the reaction 
system under investigation, thus precluding the precise 
evaluation of the magnitude of systematic error result- 
ing from mass-transport limitation. Consequently, 
experiments to determine the kinetics of reactions in 
aqueous droplets should be conducted under con- 
ditions in which mass-transport limitation to the 
overall rate is minimized. 

This theoretical framework has been applied 
(Freiberg and Schwartz, 1980) to an examination of 
laboratory studies of SO2 oxidation in suspended 
droplets and to consideration of mass transport limi- 
tation to the rate of oxidation of SO2 in clouds and 
fogs. 
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APPENDIX 

TIME-DEPENDENT SOLUTION 

The purpose of this appendix is to provide insight into the 
time depndence of the aqueous phase reagent concentration 
following sudden exposure of a droplet to a gas-phase 
reagent, and to establish the limit of validity of the steady- 
state treatment employed in the text. 

The partial differential equation describing the time and 
space evaluation of the concentration A of an aqueous-phase 
reagent undergoing first-order kinetics (dA/dc = -kA) 
in a spherically symmetric geometry is given as a function of 
radius r and time t as 

The boundary conditions to Equation (Al) for a droplet 
initially free of dissolved reagent that is suddenly (at time 

The flux characterizing the present problem may be obtained 
from Equation (A2) by Equation (A5), and has been given by 

r = 0) exposed to a gas-phase reagent that induces a constant 
concentration A* at the surface (r = a) are 

A(r, 0) = 0, r < a, (lO@ 

A(a, c) = A*, t B 0. (IO@ 

Equation (Al) with conditions (10) may be solved in a variety 
of ways-separation of variables and series solution, Laplace 
transform, or the method of Danckwerts (1951) utilizing the 
solution of Carslaw and Jaeger (1959) for the corresponding 
problem without reaction-to yield the solution 

A(r, r) 1 sinh qz 2 1 
- = --+-- 

A* z sinh q 71 z 

xemy f (-1)“n 
sin(nrrz)exp[ - y(nz/q)2] 

n=1 (q/7t)2 + n2 ’ “‘I 

where, for compactness, we have introduced y = kt and z 
= r/a. (The first term in (A2) is of course the steady-state 

solution, Equation 14.) In Fig. Al are plotted concentration 
profiles A(r, t) for several values of t, for the diffuso-reactive 
parameter q = 1.5. At early times, as expected, the penetration 
of reactant into the drop is quite small, but this penetration 
rapidly approaches the steady-state profile. Figure Al may be 
compared with the situation for diffusion in the absence of 
reaction, corresponding to q = 0, that has been treated by 
Crank (1975) [cf. also Carslaw and Jaeger (1959)]. In the 
absence of reaction the concentration profile becomes 
uniform at large time, whereas for first-order reaction treated 
here the concentration function approaches a non-uniform 
steady-state profile such as has been given in Fig. 4. 

In order to consider the time dependence of the rate of 
reaction averaged over the drop, R = kY& we have computed 
(cf. Equation 17) the time-dependent average concentration 

Examples of this time dependence of 2 are given in Fig. A2 
for several values of q. It may be seen that for low values of q 
the approach to steady state is quite rapid compared to the 
characteristic time of the reaction, k-l, but that significant 
departure from the steady-state average persists for greater 
time as q increases. It is readily established from Equation 
(A3) that the departure of A from its steady-state value is 
bounded by a simple product of exponentials involving the 
rates of diffusion and reaction, 

&-X(f) 

KS 

Ge-ye-y(n/q)2 E e-kte-tDan’la’)t. (A4) 

From this result it is seen that the approach ofz to its steady 
state value at large q is governed by the characteristic time of 
reaction, not by the much greater characteristic time of 
diffusion. 

We wish to consider now the amount or mass of material 
M(l) taken up by the drop as a function of time subsequent to 
the commencement of the exposure. This amount of uptake, 
M(c), includes the sum of reactant and product mass taken up 
by exposure for a period c, and thus represents an experiment- 
ally measureable quantity, i.e. the quantity that would be 
determined by chemical analysis conducted subsequently. 

The expression for M(t) is conveniently obtained by first 
computing the flux of reactant into the drop, F(r), which is 
governed by the rate of aqueous-phase diffusion at the surface 

(A5) 

The amount of material in the drop is then given as 

1 

, 
M(c) = F(r’)dr’. (A6) 

0 
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q=l.5 

0 0.2 0.4 0.6 0.8 I.0 

Fig. Al. Values of the time- and spacedependent reagent 
concentration A(r, t) as a function of I for indicated values of 
kt, and for the diffuso-reactive parameter 4 = a(k/Da)1’2 
= 1.5. With increasing time the radial concentration function 
approaches the non-uniform steady-state profile; contrast 
Fig. 6.1 of Crank (1975) displaying profiles for diffusion in the 

absence of reaction, i.e. q = 0 in the present notation. 

kt 

Fig. A2. Reagent concentration A averaged over droplet 
volume, ratioed to concentration at the surface ,4*, as a 
function of time, for indicated values of q. Infinite time or 

steady state values are indicated on right hand axis. 

Danckwerts (1951) [cf. also Crank (1975)] as 

F(c) = (4&/3)kA* 

The first term in Equation (19) is seen to equal the steady state 
rate of reaction, Rss = kA ~~, multiplied by the volume of the 
drop 

Fss = (4m3/3) k/i* [3(cF-;)]. (A8) 

The second term in Equation (A7) is initially large as material 
rapidly diffuses into the drop to establish Xss, but ultimately 
decays. This time dependence of the flux is shown in Fig. A3 
for several values of q. 

As with the average concentration we are concerned with 
the departure of the flux from its steady-state value and with 

I I I ’ ,J 
0.5 I a 

kt 

Fig. A3. Flux of reagent entering drop as a function of time 
for indicated values of q. Flux is normalized to the steady- 
state flux for reagent concentration in equilibrium with the 

gas-phase concentration, F* = (4m3/3)kAa. 

I 
\\ 

I I I 7 

0 I 2 

ht 

Fig. A4. Time dependence of the relative difference between 
the flux into the drop at time t and the steady state flux into 
the drop, for indicated values of q, Dark curve at right of 
figure represents the envelope of the several curves and 
constitutes an upper bound on this relative difference for all 

values of q. 

the time dependence of the relaxation to the steady-state 
value. In Fig. A4 this relative departure, [F(c)/FJ- ‘, is 
plotted as a function of time for several values of q. The 
several curves decrease sharply on the time scale of reaction, 
and in fact the entire set is bounded by a sharply decreasing 
envelope. This envelope serves to set an upper limit to the time 
required for the flux into the drop to reach its steady-state 
value. For example, at r = k -’ the flux will not exceed the 
steady-state flux by more than 6.8 yO, and at t = 2k- ’ by more 
than 1.1%. Since this flux is equivalent [by Equations (A5) 
and (A6)] to the experimentally determined “rate of reaction” 
(in fact, rate of uptake), it is thus established that the steady 
state expressions may be employed at times greater than, say, 
(1 or 2) k- ‘, depending on the desired accuracy. 
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4 
Equation (A7) can be integrated over time (Equation A6) to 

give the amount of material in the drop 

kt 

Fig. A5 Amount of material M(r) (sum of reagent plus 
product) taken up by droplet as a function of time, for 
indicated values of q. Amount of material is normalized to the 
amount of reagent present in the drop in equilibrium with the 

gas-phase concentration, Ma = (47ru3/3),4*. 

6 a 
emy 

n2 exp[ - ~W~~21 -- 
lc2 p2 + WN212 

i 
coth q 1 

+3 --- - )I V (A9) 
\ q @I- J 

An equivalent expression, except for an apparent typograph- 
ical error, has been given by Crank (1975). Equation (A9) 
gives the functional form corresponding to a set of experi- 
mental measurements of uptake by a drop initially free of 
solute that is exposed to the reactive gas for a period of time t. 
This amount of uptake is shown in Fig. A5 for several 
values of q. For q = 0, corresponding to infinitely fast 
diffusion, the amount of material taken up rises instan- 
taneously to Me = (47ta3/3)~.+, the amount of reactant that 
would be in the drop in equilibrium with the gas-phase 
concentration, and then increases linearly with time as 
reaction proceeds permitting further uptake of reagent. For 
small but finite values of q, < OS, the uptake curves closely 
approach the q = 0 function, but for greater values of q, there 
is a significant lag in achieving the steady state rate, as well as 
the departure of this rate from the ideal rate (slope of one on 
this plot) that has already been discussed. As noted in the 
above discussion the departure from the steady state rate 
decays with the time constant of the reaction, permitting the 
use of steady-state expressions developed above for times 
greater than (1 or 2)k-‘. 


